Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 23(37): 21065-21077, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34523628

RESUMEN

For the theoretical study of the title reaction, an analytical full-dimensional potential energy surface named PES-2021 was developed for the first time, by fitting high-level explicitly-correlated ab initio data. This reaction presented high exothermicity, (298 K) = -11.6 kcal mol-1, reproducing the experimental evidence; it is a barrierless reaction and no intermediate complexes were found. PES-2021 is a continuous and smooth potential energy surface, it includes intuitive concepts in its development and fitting, such as stretching and bending nuclear motions, and it presents analytical first energy derivatives. Based on PES-2021, kinetics and dynamics studies were carried out using quasi-classical trajectory calculations. In the kinetics study, over the temperature range 300-450 K, we observed that rate constants were practically independent of temperature, with an almost zero activation energy, as compared to 0.0 and -0.48 kcal mol-1 experimentally reported. In this kinetics study the role of the spin-orbit effect on reactivity was analysed. In the dynamics study, different product pair-correlated dynamics properties were compared with the only experimental evidence: product energy partition, product vibrational distribution, product angular distribution and product speed distribution. We observed two mechanisms of reaction, a stripping mechanism associated with large impact parameters and forward scattering, and an indirect mechanism associated with sideways-backward scattering related with "nearly-trapped" trajectories due to the product rotation. In general, theoretical results reasonably simulate the experimental measurements when they consider some rotational and vibrational constraints as well as binning techniques to mimic a quantum-mechanical behaviour. Although the agreement is not quantitative, the present results shed light on the mechanism of this difficult polyatomic reactive system.

3.
Phys Chem Chem Phys ; 22(39): 22591-22601, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33000848

RESUMEN

A new analytical potential energy surface was developed for the first time for the nine-body O(3P) + C2H6 hydrogen abstraction reaction, named PES-2020, which was fitted to explicitly-correlated high-level electronic structure calculations. This surface simulates the topography of the reactive system, from reactants to products, OH(v,j) + C2H5. The adiabatic energy of reaction, ΔHr(0 K) = -2.33 kcal mol-1, reproduces the experimental evidence, and the barrier height, 10.70 kcal mol-1, agrees with the ab initio calculations used as input. In addition, an intermediate complex in the exit channel is observed, which is stabilized with respect to the products of the reaction. Based on PES-2020 a dynamics study was carried out, where quasi-classical trajectory calculations were performed for collision energies in the range of 7.0-60.0 kcal mol-1, which covers high collision energy regions. The reaction cross section increases with collision energy; the largest fraction of available energy is deposited as translational energy (44-66%), and the scattering distribution evolves from backward to forward with collision energy. These findings reproduce previous theoretical calculations using electronic structure calculations of lower levels. However, where these previous studies failed, viz. in rotational and vibrational OH(v,j) distributions, PES-2020 reproduces practically quantitatively the experimental evidence, i.e., cold vibration and rotation, the rotational distribution peaking at j = 1-3 depending on the collision energy. In sum, this behaviour is typical of gas-phase hydrogen abstraction reactions with direct mechanism and high reaction barrier.

4.
Phys Chem Chem Phys ; 22(26): 14796-14810, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32578642

RESUMEN

To describe the gas-phase hydrogen abstraction reaction between the hydroxyl radical and the ethane molecule, an analytical full-dimensional potential energy surface was developed within the Born-Oppenheimer approximation. This reactive process is a ten-body system with 24 degrees of freedom, which represents a theoretical challenge. The new surface, named PES-2020, presents low barrier, 3.76 kcal mol-1, high exothermicity, -16.20 kcal mol-1, and intermediate complexes in the entrance and exit channels. To test the quality and accuracy of the analytical surface several stringent tests were performed and, in general, PES-2020 reasonably simulates the theoretical information used as input, it is a continuous and smooth potential, without spurious minima, it presents great versatility and a reasonable description of this ten-body reaction. Based on this surface, an exhaustive kinetics and dynamics study was performed with a double objective: to analyze the capacity of the new surface to simulate the experimental evidence, and to help understand the mechanism of reaction and the role of the ethyl group in the reaction. In the kinetics study, three approaches were used: variational transition-state theory with multidimensional tunnelling (VTST/MT), ring polymer molecular dynamics (RPMD) and quasi-classical trajectory (QCT) results, in the temperature range 200-2000 K. There is general agreement between the three approaches and they reasonably simulate the experimental behaviour, which gives confidence to the fitness of the new surface to describe the system. In the dynamics study, QCT calculations were performed at 298 K for a direct comparison with the only experimental result reported. We found that ethyl fragment presents a noticeable internal energy (∼20%) and so cannot be considered as a spectator. The water product vibrational energy is reasonably reproduced, though when a level-by-level distribution is analyzed the agreement is only qualitative.

5.
Phys Chem Chem Phys ; 20(30): 19860-19870, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30039153

RESUMEN

An exhaustive kinetics study was performed for the title reaction using two theoretical approaches: variational transition-state theory and quasi-classical trajectory calculations, based on an original new analytical full-dimensional potential energy surface, named PES-2018, which has been fitted to high-level ab initio calculations. The theoretical results were compared with the available experimental data in the temperature range 189-350 K, a difficult comparison because of experimental controversies about the final rate constants (factor of about two) and on the activation energy (positive and negative values have been reported). There is agreement between the two theoretical approaches, with differences of less than 20%, and with the most recent experiments, with differences of less than 30%. Both theories gave small and positive activation energies, reasonably reproducing the most recent experiments, although they showed less dependence on temperature. To understand the theory/experiment differences, several sources of error were analysed, without discarding experimental uncertainties, such as limitations of the theoretical tools (PES and kinetics approaches), and the manner in which spin-orbit effects were included in the present non-relativistic study. Finally, H/D and 12C/13C kinetics isotope effects were reported for the first time for the title reaction, though unfortunately no experimental data are available for comparison.

6.
Phys Chem Chem Phys ; 19(2): 1580-1589, 2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-27990521

RESUMEN

Using a full-dimensional analytical potential energy surface describing the OH/OD + GeH4 hydrogen abstraction reactions (J. Espinosa-Garcia, C. Rangel and J. C. Corchado, Phys. Chem. Chem. Phys., 2016, 18, 16941), quasi-classical trajectory calculations were performed at 298 K to simulate the scarce experimental data at this temperature. This system presents wells in the entrance and exit channels, influencing product angular distribution, which is practically isotropic. Moreover, isotopic effects were not observed. It was found that the GeH3 co-product presents little internal energy (11% of the total available energy), although not negligible, and that the water product receives the major part of the available energy, mainly in the newly formed OH bond, while the initial OH/OD reactant bond acts as a spectator mode. These results reproduce the experimental evidence, the larger discrepancy being in the water bending vibrational distribution, which is broader in the experiment. Several factors were analyzed to account for this discrepancy, and it was concluded that the zero-point energy violation per mode is the main, but not the only, cause.

7.
Phys Chem Chem Phys ; 18(25): 16941-9, 2016 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-27292879

RESUMEN

We report an analytical full-dimensional potential energy surface for the GeH4 + OH → GeH3 + H2O reaction based on ab initio calculations. It is a practically barrierless reaction with very high exothermicity and the presence of intermediate complexes in the entrance and exit channels, reproducing the experimental evidence. Using this surface, thermal rate constants for the GeH4 + OH/OD isotopic reactions were calculated using two approaches: variational transition state theory (VTST) and quasi-classical trajectory (QCT) calculations, in the temperature range 200-1000 K, and results were compared with the only experimental data at 298 K. Both methods showed similar values over the whole temperature range, with differences less than 30%; and the experimental data was reproduced at 298 K, with negative temperature dependence below 300 K, which is associated with the presence of an intermediate complex in the entrance channel. However, while the QCT approach reproduced the experimental kinetic isotope effect, the VTST approach underestimated it. We suggest that this difference is associated with the harmonic approximation used in the treatment of vibrational frequencies.

8.
J Phys Chem A ; 118(3): 554-60, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24383979

RESUMEN

The hydrogen abstraction reaction of fluorine with ammonia represents a true chemical challenge because it is very fast, is followed by secondary abstraction reactions, which are also extremely fast, and presents an experimental/theoretical controversy about rate coefficients. Using a previously developed full-dimensional analytical potential energy surface, we found that the F + NH3 → HF + NH2 system is a barrierless reaction with intermediate complexes in the entry and exit channels. In order to understand the reactivity of the title reaction, thermal rate coefficidents were calculated using two approaches: ring polymer molecular dynamics and quasi-classical trajectory calculations, and these were compared with available experimental data for the common temperature range 276-327 K. The theoretical results obtained show behavior practically independent of temperature, reproducing Walther-Wagner's experiment, but in contrast with Persky's more recent experiment. However, quantitatively, our results are 1 order of magnitude larger than those of Walther-Wagner and reasonably agree with the Persky at the lowest temperature, questioning so Walther-Wagner's older data. At present, the reason for this discrepancy is not clear, although we point out some possible reasons in the light of current theoretical calculations.


Asunto(s)
Amoníaco/química , Flúor/química , Hidrógeno/química , Simulación de Dinámica Molecular , Cinética , Temperatura
9.
J Chem Phys ; 138(21): 214306, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23758370

RESUMEN

To understand the reactivity and mechanism of the OH + NH3 → H2O + NH2 gas-phase reaction, which evolves through wells in the entrance and exit channels, a detailed dynamics study was carried out using quasi-classical trajectory calculations. The calculations were performed on an analytical potential energy surface (PES) recently developed by our group, PES-2012 [Monge-Palacios et al. J. Chem. Phys. 138, 084305 (2013)]. Most of the available energy appeared as H2O product vibrational energy (54%), reproducing the only experimental evidence, while only the 21% of this energy appeared as NH2 co-product vibrational energy. Both products appeared with cold and broad rotational distributions. The excitation function (constant collision energy in the range 1.0-14.0 kcal mol(-1)) increases smoothly with energy, contrasting with the only theoretical information (reduced-dimensional quantum scattering calculations based on a simplified PES), which presented a peak at low collision energies, related to quantized states. Analysis of the individual reactive trajectories showed that different mechanisms operate depending on the collision energy. Thus, while at high energies (E(coll) ≥ 6 kcal mol(-1)) all trajectories are direct, at low energies about 20%-30% of trajectories are indirect, i.e., with the mediation of a trapping complex, mainly in the product well. Finally, the effect of the zero-point energy constraint on the dynamics properties was analyzed.


Asunto(s)
Amoníaco/química , Hidrógeno/química , Hidróxidos/química , Teoría Cuántica , Termodinámica , Propiedades de Superficie
10.
Phys Chem Chem Phys ; 14(20): 7497-508, 2012 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-22526719

RESUMEN

A detailed state-to-state dynamics study was performed to analyze the effects of vibrational excitation and translational energy on the dynamics of the Cl((2)P) + NH(3)(v) gas-phase reaction, effects which are connected to such issues as mode selectivity and Polanyi's rules. This reaction evolves along two deep wells in the entry and exit channels. At low and high collision energies quasi-classical trajectory calculations were performed on an analytical potential energy surface previously developed by our group, together with a simplified model surface in which the reactant well is removed to analyze the influence of this well. While at high energy the independent vibrational excitation of all NH(3)(v) modes increases the reactivity by a factor ≈1.1-2.9 with respect to the vibrational ground-state, at low energy the opposite behaviour is found (factor ≈ 0.4-0.9). However, when the simplified model surface is used at low energy the independent vibrational excitation of all NH(3)(v) modes increases the reactivity, showing that the behaviour at low energies is a direct consequence of the existence of the reactant well. Moreover, we find that this reaction exhibits negligible mode selectivity, first because the independent excitation of the N-H symmetric and asymmetric stretch modes, which lie within 200 cm(-1) of each other, leads to reactions with similar reaction probabilities, and second because the vibrational excitation of the reactive N-H stretch mode is only partially retained in the products. For this "late transition-state" reaction, we also find that vibrational energy is more effective in driving the reaction than an equivalent amount of energy in translation, consistent with an extension of Polanyi's rules. Finally, we find that the non-reactive events, Cl((2)P)+NH(3)(v) → Cl((2)P) + NH(3)(v'), lead to a great number of populated vibrational states in the NH(3)(v') product, even starting from the NH(3)(v = 0) vibrational ground state at low energies, which is unphysical in a quantum world. This result is interpreted on the basis of non-conservation of the ZPE per mode.

11.
Phys Chem Chem Phys ; 12(15): 3873-7, 2010 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-20358082

RESUMEN

Classical mechanics is the only practical way to simulate internuclear motion in many complex systems that are important for biology, materials science, and technology. It is therefore important to test classical dynamics on simpler systems. The OH + H(2) or OH + D(2) system is the prototype four-body chemical reaction for fundamental studies of this nature, and high-resolution experiments have been reported by Davis and co-workers. Here we use those experiments to test state-resolved quasi-classical trajectory calculations in a quantum spirit, and find good agreement with experiment. Our simulations correctly predict that the newly formed oxygen-deuterium bond in the HOD product is preferentially excited to the vibrational state v = 2, and they yield a state-resolved product translational energy distribution. Of special interest is that the triple (angle-velocity) differential cross section shows the same state-resolved structure associated with the product vibrational states that were analyzed. This level of accuracy has previously been achieved only for triatomic systems, and these new simulations demonstrate that the quasi-classical method with quantum corrections may represent a reasonable alternative to quantum scattering approaches for the description of polyatomic reaction dynamics.

12.
J Phys Chem A ; 114(12): 4455-63, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20205412

RESUMEN

Based on accurate electronic structure calculations, a new analytical potential energy surface (PES) was fitted to simultaneously describe the hydrogen abstraction reaction from ammonia by a hydrogen atom, and the ammonia inversion. Using a wide spectrum of properties of the reactive system (equilibrium geometries, vibrational frequencies, and relative energies of the stationary points, topology of the reaction paths, and points on the reaction swaths) as reference, the resulting analytical PES reproduces reasonably well the input ab initio information obtained at the CCSD(T)/cc-pVTZ level, which represents a severe test for the new surface. As a first application, on this analytical PES we perform an extensive kinetics study using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 200-2000 K. For the hydrogen abstraction reaction, the forward rate constants reproduce the experimental measurements, while the reverse ones are slightly underestimated. Another severe test of the new surface is the analysis of the kinetic isotope effects (KIEs). The KIEs between unsubstituted and all deuterated reactions agree with experiment in the common temperature range. For the ammonia inversion reaction, the splitting of the degenerate vibrational levels of the double well due to the tunneling contribution, which is very important in this reaction representing 93% of the reactivity at 200 K, was calculated for the NH(3) and ND(3) species. The values found were 3.6 and 0.37 cm(-1), respectively, which although higher than experimental values, reproduce the experimental behavior on isotopic substitution.

13.
J Chem Phys ; 130(18): 184315, 2009 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-19449929

RESUMEN

On a new potential energy surface (PES-2008) developed by our group (preceding paper), we performed an extensive kinetics study using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range of 250-2000 K and a dynamics study using quasiclassical trajectory (QCT) and quantum-mechanical (QM) calculations at collision energies between 0.7 and 2.0 eV for the title reaction and isotopically substituted versions. Kinetically, the H + CH(4) forward and reverse thermal rate constants reproduce the available experimental data, with a small curvature of the Arrhenius plot indicating the role of tunneling in this hydrogen abstraction reaction. Five sets of kinetic isotope effects are also calculated. In general, they reproduce the experimental information. Dynamically, we focused on the H + CD(4) reaction because there are more experimental studies for comparison. Most of the available energy appears as product translational energy (55%-68%), with the HD product being vibrationally cold (v(')=0,1) in agreement with experiment, although rotationally hotter than experiment. The reaction cross section is practically negligible at 0.7 eV and still small at 1.5 eV, reproducing the experimental evidence, although our values are smaller. The product angular distribution is analyzed using QCT and QM methods. While at low energies (0.7 eV) both the QCT and the QM calculations yield forward scattered CD(3) product, i.e., a rebound mechanism, at high energy (1.2 eV) only the QM calculations reproduce the experiment. The agreement with this wide variety of kinetic and dynamic experimental data (always qualitative and in some cases quantitative) shows the capacity of the PES-2008 surface to describe the reaction system.

14.
J Phys Chem A ; 110(37): 10715-9, 2006 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-16970361

RESUMEN

Using an analytical potential energy surface previously developed by our group, namely PES-2002, we analyzed the gas-phase reaction between a hydrogen atom and perdeuterated methane. We studied the effect of quasiclassical trajectory (QCT) and reduced dimensionality quantum-scattering (QM) calculations, with their respective limitations, on CD3 product angular distributions in the collision energy range 16.1-46.1 kcal x mol(-1). It was found that at low collision energy, 16.1 kcal x mol(-1), both the QCT and QM calculations yielded forward scattered CD3 products, i.e., a rebound mechanism. However, at high energies only the QM calculations on the PES-2002 surface reproduced the angular scattering found experimentally.

15.
J Phys Chem A ; 110(31): 9568-74, 2006 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-16884189

RESUMEN

The effects of the methane torsional (nu(2)), umbrella (nu(4)), and the combination nu(2)+nu(4) bending mode excitations on the reactivity and dynamics of the gas-phase Cl + CH(4) --> HCl + CH(3) reaction were analyzed. Quasi-classical trajectory (QCT) calculations, including corrections to avoid zero-point energy leakage along the trajectories, were used on an analytical potential energy surface previously developed by our group. With respect to the reactivity, we found that excitation of either bending mode independently gave similar increases in the reactivity, while the increase observed upon excitation of both modes was larger than the sum of the effect of exciting them independently. Both results agree with recent experimental measures. With respect to the dynamics (rotovibrational and angular distributions of the products), the two bending modes and their combination gave very similar pictures, reproducing the experimental behavior. The satisfactory agreement obtained with a great variety of experimental data (always qualitatively acceptable and sometimes even quantitatively) of the present QCT study lends confidence to the potential energy surface constructed by our group.

16.
J Chem Phys ; 124(7): 74312, 2006 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-16497041

RESUMEN

To analyze the effects of the symmetric (nu(1)) and asymmetric (nu(3)) stretch mode excitations and the role played by the "umbrella" bending (nu(4)) mode excitation in the reactivity and the dynamics of the gas-phase Cl+CH(4) reaction, an exhaustive dynamics study was performed. Quasiclassical trajectory (QCT) calculations, including corrections to avoid zero-point energy leakage along the trajectories, were used in this work on an analytical potential energy surface previously developed by Espinosa-Garcia et al. [J. Chem. Phys. (to be published)]. First, with respect to the reactivity, we found that the nu(1) mode excitation is more reactive than the nu(3) mode by a factor of 1.20, in agreement with the experimental tendency between these modes. The inclusion of the nu(4) bending mode practically does not affect this relative reactivity, (nu(1+)nu(4))(nu(3+)nu(4)) = 1.16. Second, with respect to the dynamics (rotovibrational and angular distributions of the products), the two stretch modes, nu(1) and nu(3), give very similar pictures, reproducing the experimental behavior, and the nu(4) "umbrella" mode does not affect the dynamics. The satisfactory reproduction (always qualitatively acceptable and sometimes even quantitatively) of a great variety of experimental data by the QCT study presented here lends confidence to the potential energy surface constructed by Espinosa-Garcia et al. [J. Chem. Phys. (to be published)].

17.
J Phys Chem A ; 109(21): 4777-84, 2005 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-16833821

RESUMEN

The antioxidant activity of alpha-tocopherol against the damaging hydroxyl radical was analyzed theoretically by hybrid density functional theory, following the direct dynamics method, where the thermal rate constants were calculated using variational transition-state theory with multidimensional tunneling. We found that the OH radical is only slightly or not at all selective, attacking by different mechanisms at several positions of the alpha-tocopherol molecule, giving competitive reactions. The most favorable pathways are the hydrogen abstraction reaction from the phenolic hydrogen and the electrophilic addition onto the aromatic ring. We propose a final rate constant, the sum of the competitive hydrogen abstraction and addition reactions, > or =2.7 x 10(8) M(-1) s(-1) at 298 K, where the hydrogen abstraction reaction represents only 20% of the total OH radical reaction. This result indicates that, molecule by molecule, in an apolar environment, alpha-tocopherol is less effective than coenzyme Q (which presents a rate constant of 6.2 x 10(10) M(-1) s(-1) at 298 K) as a scavenger of OH radicals. It was also found that both mechanisms are not direct but pass through intermediates in the entry channel, with little or no influence on the dynamics of the reactions. The hydrogen abstraction reaction also presents another intermediate in the exit channel, which may have a significant role in preventing the pro-oxidant effects of alpha-tocopherol, although less important than with free radicals other than OH.


Asunto(s)
Hidróxidos/química , alfa-Tocoferol/química , Antioxidantes/química , Simulación por Computador , Electrones , Radicales Libres/química , Hidrógeno/química , Cinética , Estructura Molecular , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...